Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 198
Filter
1.
Nat Commun ; 15(1): 2539, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570531

ABSTRACT

Cell segregation allows the compartmentalization of cells with similar fates during morphogenesis, which can be enhanced by cell fate plasticity in response to local molecular and biomechanical cues. Endothelial tip cells in the growing retina, which lead vessel sprouts, give rise to arterial endothelial cells and thereby mediate arterial growth. Here, we have combined cell type-specific and inducible mouse genetics, flow experiments in vitro, single-cell RNA sequencing and biochemistry to show that the balance between ephrin-B2 and its receptor EphB4 is critical for arterial specification, cell sorting and arteriovenous patterning. At the molecular level, elevated ephrin-B2 function after loss of EphB4 enhances signaling responses by the Notch pathway, VEGF and the transcription factor Dach1, which is influenced by endothelial shear stress. Our findings reveal how Eph-ephrin interactions integrate cell segregation and arteriovenous specification in the vasculature, which has potential relevance for human vascular malformations caused by EPHB4 mutations.


Subject(s)
Endothelial Cells , Ephrins , Mice , Humans , Animals , Endothelial Cells/metabolism , Ephrin-B2/genetics , Ephrin-B2/metabolism , Arteries/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Cell Separation , Receptor, EphB4/genetics , Receptor, EphB4/metabolism
2.
Elife ; 122023 Nov 14.
Article in English | MEDLINE | ID: mdl-37963071

ABSTRACT

In vitro culture systems that structurally model human myogenesis and promote PAX7+ myogenic progenitor maturation have not been established. Here we report that human skeletal muscle organoids can be differentiated from induced pluripotent stem cell lines to contain paraxial mesoderm and neuromesodermal progenitors and develop into organized structures reassembling neural plate border and dermomyotome. Culture conditions instigate neural lineage arrest and promote fetal hypaxial myogenesis toward limb axial anatomical identity, with generation of sustainable uncommitted PAX7 myogenic progenitors and fibroadipogenic (PDGFRa+) progenitor populations equivalent to those from the second trimester of human gestation. Single-cell comparison to human fetal and adult myogenic progenitor /satellite cells reveals distinct molecular signatures for non-dividing myogenic progenitors in activated (CD44High/CD98+/MYOD1+) and dormant (PAX7High/FBN1High/SPRY1High) states. Our approach provides a robust 3D in vitro developmental system for investigating muscle tissue morphogenesis and homeostasis.


Humans contains around 650 skeletal muscles which allow the body to move around and maintain its posture. Skeletal muscles are made up of individual cells that bundle together into highly organized structures. If this group of muscles fail to develop correctly in the embryo and/or fetus, this can lead to muscular disorders that can make it painful and difficult to move. One way to better understand how skeletal muscles are formed, and how this process can go wrong, is to grow them in the laboratory. This can be achieved using induced pluripotent stem cells (iPSCs), human adult cells that have been 'reprogrammed' to behave like cells in the embryo that can develop in to almost any cell in the body. The iPSCs can then be converted into specific cell types in the laboratory, including the cells that make up skeletal muscle. Here, Mavrommatis et al. created a protocol for developing iPSCs into three-dimensional organoids which resemble how cells of the skeletal muscle look and arrange themselves in the fetus. To form the skeletal muscle organoid, Mavrommatis et al. treated iPSCs that were growing in a three-dimensional environment with various factors that are found early on in development. This caused the iPSCs to organize themselves in to embryonic and fetal structures that will eventually give rise to the parts of the body that contain skeletal muscle, such as the limbs. Within the organoid were cells that produced Pax7, a protein commonly found in myogenic progenitors that specifically mature into skeletal muscle cells in the fetus. Pax 7 is also present in 'satellite cells' that help to regrow damaged skeletal muscle in adults. Indeed, Mavrommatis et al. found that the myogenic progenitors produced by the organoid were able to regenerate muscle when transplanted in to adult mice. These findings suggest that this organoid protocol can generate cells that will give rise to skeletal muscle. In the future, these lab-grown progenitors could potentially be created from cells isolated from patients and used to repair muscle injuries. The organoid model could also provide new insights in to how skeletal muscles develop in the fetus, and how genetic mutations linked with muscular disorders disrupt this process.


Subject(s)
Muscle, Skeletal , Satellite Cells, Skeletal Muscle , Humans , Muscle, Skeletal/metabolism , Cell Differentiation , Fetus/metabolism , Satellite Cells, Skeletal Muscle/physiology , Muscle Development/physiology , PAX7 Transcription Factor/metabolism
3.
Bone Res ; 11(1): 50, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37752132

ABSTRACT

Skeletal stem and progenitor cells (SSPCs) perform bone maintenance and repair. With age, they produce fewer osteoblasts and more adipocytes leading to a loss of skeletal integrity. The molecular mechanisms that underlie this detrimental transformation are largely unknown. Single-cell RNA sequencing revealed that Notch signaling becomes elevated in SSPCs during aging. To examine the role of increased Notch activity, we deleted Nicastrin, an essential Notch pathway component, in SSPCs in vivo. Middle-aged conditional knockout mice displayed elevated SSPC osteo-lineage gene expression, increased trabecular bone mass, reduced bone marrow adiposity, and enhanced bone repair. Thus, Notch regulates SSPC cell fate decisions, and moderating Notch signaling ameliorates the skeletal aging phenotype, increasing bone mass even beyond that of young mice. Finally, we identified the transcription factor Ebf3 as a downstream mediator of Notch signaling in SSPCs that is dysregulated with aging, highlighting it as a promising therapeutic target to rejuvenate the aged skeleton.


Subject(s)
Adipocytes , Osteogenesis , Animals , Mice , Osteogenesis/genetics , Adiposity , Aging/genetics , Arthrodesis , Mice, Knockout , Psychomotor Agitation
4.
J Am Heart Assoc ; 12(17): e031044, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37609982

ABSTRACT

Background Stroke is a leading global cause of human death and disability, with advanced aging associated with elevated incidences of stroke. Despite high mortality and morbidity of stroke, the mechanisms leading to blood-brain barrier dysfunction and development of stroke with age are poorly understood. In the vasculature of brain, endothelial cells (ECs) constitute the core component of the blood-brain barrier and provide a physical barrier composed of tight junctions, adherens junctions, and basement membrane. Methods and Results We show, in mice, the incidents of intracerebral bleeding increases with age. After isolating an enriched population of cerebral ECs from murine brains at 2, 6, 12, 18, and 24 months, we studied age-associated changes in gene expression. The study reveals age-dependent dysregulation of 1388 genes, including many involved in the maintenance of the blood-brain barrier and vascular integrity. We also investigated age-dependent changes on the levels of CpG methylation and accessible chromatin in cerebral ECs. Our study reveals correlations between age-dependent changes in chromatin structure and gene expression, whereas the dynamics of DNA methylation changes are different. Conclusions We find significant age-dependent downregulation of the Aplnr gene along with age-dependent reduction in chromatin accessibility of promoter region of the Aplnr gene in cerebral ECs. Aplnr is associated with positive regulation of vasodilation and is implicated in vascular health. Altogether, our data suggest a potential role of the apelinergic axis involving the ligand apelin and its receptor to be critical in maintenance of the blood-brain barrier and vascular integrity.


Subject(s)
Endothelial Cells , Stroke , Humans , Animals , Mice , Apelin Receptors , Transcriptome , Cerebral Hemorrhage/genetics , Chromatin , Epigenesis, Genetic
5.
Nat Cardiovasc Res ; 2(3): 307-321, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-37476204

ABSTRACT

Leukocytes and resident cells in the arterial wall contribute to atherosclerosis, especially at sites of disturbed blood flow. Expression of endothelial Tie1 receptor tyrosine kinase is enhanced at these sites, and attenuation of its expression reduces atherosclerotic burden and decreases inflammation. However, Tie2 tyrosine kinase function in atherosclerosis is unknown. Here we provide genetic evidence from humans and from an atherosclerotic mouse model to show that TIE2 is associated with protection from coronary artery disease. We show that deletion of Tie2, or both Tie2 and Tie1, in the arterial endothelium promotes atherosclerosis by increasing Foxo1 nuclear localization, endothelial adhesion molecule expression and accumulation of immune cells. We also show that Tie2 is expressed in a subset of aortic fibroblasts, and its silencing in these cells increases expression of inflammation-related genes. Our findings indicate that unlike Tie1, the Tie2 receptor functions as the dominant endothelial angiopoietin receptor that protects from atherosclerosis.

6.
Brain ; 146(9): 3634-3647, 2023 09 01.
Article in English | MEDLINE | ID: mdl-36995941

ABSTRACT

Cerebral cavernous malformations (CCMs) and spinal cord cavernous malformations (SCCMs) are common vascular abnormalities of the CNS that can lead to seizure, haemorrhage and other neurological deficits. Approximately 85% of patients present with sporadic (versus congenital) CCMs. Somatic mutations in MAP3K3 and PIK3CA were recently reported in patients with sporadic CCM, yet it remains unknown whether MAP3K3 mutation is sufficient to induce CCMs. Here we analysed whole-exome sequencing data for patients with CCM and found that ∼40% of them have a single, specific MAP3K3 mutation [c.1323C>G (p.Ile441Met)] but not any other known mutations in CCM-related genes. We developed a mouse model of CCM with MAP3K3I441M uniquely expressed in the endothelium of the CNS. We detected pathological phenotypes similar to those found in patients with MAP3K3I441M. The combination of in vivo imaging and genetic labelling revealed that CCMs were initiated with endothelial expansion followed by disruption of the blood-brain barrier. Experiments with our MAP3K3I441M mouse model demonstrated that CCM can be alleviated by treatment with rapamycin, the mTOR inhibitor. CCM pathogenesis has usually been attributed to acquisition of two or three distinct genetic mutations involving the genes CCM1/2/3 and/or PIK3CA. However, our results demonstrate that a single genetic hit is sufficient to cause CCMs.


Subject(s)
Hemangioma, Cavernous, Central Nervous System , Proto-Oncogene Proteins , Animals , Mice , Hemangioma, Cavernous, Central Nervous System/genetics , Mutation/genetics , Phenotype , Spinal Cord/pathology
7.
JCI Insight ; 8(5)2023 03 08.
Article in English | MEDLINE | ID: mdl-36692963

ABSTRACT

Most circulating endothelial cells are apoptotic, but rare circulating endothelial colony-forming cells (C-ECFCs), also known as blood outgrowth endothelial cells, with proliferative and vasculogenic activity can be cultured; however, the origin and naive function of these C-ECFCs remains obscure. Herein, detailed lineage tracing revealed murine C-ECFCs emerged in the early postnatal period, displayed high vasculogenic potential with enriched frequency of clonal proliferative cells compared with tissue-resident ECFCs, and were not committed to or derived from the BM hematopoietic system but from tissue-resident ECFCs. In humans, C-ECFCs were present in the CD34bright cord blood mononuclear subset, possessed proliferative potential and in vivo vasculogenic function in a naive or cultured state, and displayed a single cell transcriptome sharing some umbilical venous endothelial cell features, such as a higher protein C receptor and extracellular matrix gene expression. This study provides an advance for the field by identifying the origin, naive function, and antigens to prospectively isolate C-ECFCs for translational studies.


Subject(s)
Endothelial Cells , Extracellular Matrix , Humans , Animals , Mice , Prospective Studies , Clone Cells , Endothelial Protein C Receptor
8.
Sci Adv ; 8(44): eabl9583, 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36332016

ABSTRACT

Two fundamental elements of pre-implantation embryogenesis are cells' intrinsic self-organization program and their developmental plasticity, which allows embryos to compensate for alterations in cell position and number; yet, these elements are still poorly understood. To be able to decipher these features, we established culture conditions that enable the two fates of blastocysts' extraembryonic lineages-the primitive endoderm and the trophectoderm-to coexist. This plasticity emerges following the mechanisms of the first lineage segregation in the mouse embryo, and it manifests as an extended potential for extraembryonic chimerism during the pre-implantation embryogenesis. Moreover, this shared state enables robust assembly into higher-order blastocyst-like structures, thus combining both the cell fate plasticity and self-organization features of the early extraembryonic lineages.

9.
Int J Mol Sci ; 23(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36361868

ABSTRACT

Pericytes at the blood-brain barrier (BBB) are located between the tight endothelial cell layer of the blood vessels and astrocytic endfeet. They contribute to central nervous system (CNS) homeostasis by regulating BBB development and maintenance. Loss of pericytes results in increased numbers of infiltrating immune cells in the CNS in experimental autoimmune encephalomyelitis (EAE), the mouse model for multiple sclerosis (MS). However, little is known about their competence to modulate immune cell activation or function in CNS autoimmunity. To evaluate the capacity of pericytes to directly interact with T cells in an antigen-specific fashion and potentially (re)shape their function, we depleted major histocompatibility complex (MHC) class II from pericytes in a cell type-specific fashion and performed T cell-pericyte cocultures and EAE experiments. We found that pericytes present antigen in vitro to induce T cell activation and proliferation. In an adoptive transfer EAE experiment, pericyte-specific MHC II KO resulted in locally enhanced T cell infiltration in the CNS; even though, overall disease course of mice was not affected. Thus, pericytes may serve as non-professional antigen-presenting cells affecting states of T cell activation, thereby locally shaping lesion formation in CNS inflammation but without modulating disease severity.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Mice , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , Pericytes/pathology , T-Lymphocytes , Central Nervous System/pathology , Blood-Brain Barrier/pathology , Antigens , Histocompatibility Antigens Class II , Mice, Inbred C57BL
10.
Elife ; 112022 10 05.
Article in English | MEDLINE | ID: mdl-36197007

ABSTRACT

The blood-brain barrier (BBB) limits the entry of leukocytes and potentially harmful substances from the circulation into the central nervous system (CNS). While BBB defects are a hallmark of many neurological disorders, the cellular heterogeneity at the neurovascular interface, and the mechanisms governing neuroinflammation are not fully understood.Through single-cell RNA sequencing of non-neuronal cell populations of the murine cerebral cortex during development, adulthood, ageing, and neuroinflammation, we identify reactive endothelial venules, a compartment of specialized postcapillary endothelial cells that are characterized by consistent expression of cell adhesion molecules, preferential leukocyte transmigration, association with perivascular macrophage populations, and endothelial activation initiating CNS immune responses. Our results provide novel insights into the heterogeneity of the cerebral vasculature and a useful resource for the molecular alterations associated with neuroinflammation and ageing.


Subject(s)
Endothelial Cells , Endothelium, Vascular , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Cell Adhesion Molecules/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Mice , Transcriptome
11.
FASEB J ; 36(10): e22538, 2022 10.
Article in English | MEDLINE | ID: mdl-36065631

ABSTRACT

Antipsychotic agents are clinically utilized to treat schizophrenia and other mental disorders. These drugs induce neurological and metabolic side effects, but their influence on blood vessels remains largely unknown. Here, we show that haloperidol, one of the most frequently prescribed antipsychotic agents, induces vascular defects in bone marrow. Acute haloperidol treatment results in vascular dilation that is specific to hematopoietic organs. This vessel dilation is associated with disruption of hematopoiesis and hematopoietic stem/progenitor cells (HSPCs), both of which are reversible after haloperidol withdrawal. Mechanistically, haloperidol treatment blocked the secretion of vascular endothelial growth factor A (VEGF-A) from HSPCs. Genetic blockade of VEGF-A secretion from hematopoietic cells or inhibition of VEGFR2 in endothelial cells result in similar vessel dilation in bone marrow during regeneration after irradiation and transplantation. Conversely, VEGF-A gain of function rescues the bone marrow vascular defects induced by haloperidol treatment and irradiation. Our work reveals an unknown effect of antipsychotic agents on the vasculature and hematopoiesis with potential implications for drug application in clinic.


Subject(s)
Antipsychotic Agents , Vascular Endothelial Growth Factor A , Antipsychotic Agents/pharmacology , Bone Marrow Cells/metabolism , Endothelial Cells/metabolism , Haloperidol/metabolism , Haloperidol/pharmacology , Hematopoiesis/physiology , Humans , Vascular Endothelial Growth Factor A/metabolism
12.
Circ Res ; 131(4): 308-327, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35862101

ABSTRACT

BACKGROUND: Pericytes and vascular smooth muscle cells, collectively known as mural cells, are recruited through PDGFB (platelet-derived growth factor B)-PDGFRB (platelet-derived growth factor receptor beta) signaling. MCs are essential for vascular integrity, and their loss has been associated with numerous diseases. Most of this knowledge is based on studies in which MCs are insufficiently recruited or fully absent upon inducible ablation. In contrast, little is known about the physiological consequences that result from impairment of specific MC functions. Here, we characterize the role of the transcription factor SRF (serum response factor) in MCs and study its function in developmental and pathological contexts. METHODS: We generated a mouse model of MC-specific inducible Srf gene deletion and studied its consequences during retinal angiogenesis using RNA-sequencing, immunohistology, in vivo live imaging, and in vitro techniques. RESULTS: By postnatal day 6, pericytes lacking SRF were morphologically abnormal and failed to properly comigrate with angiogenic sprouts. As a consequence, pericyte-deficient vessels at the retinal sprouting front became dilated and leaky. By postnatal day 12, also the vascular smooth muscle cells had lost SRF, which coincided with the formation of pathological arteriovenous shunts. Mechanistically, we show that PDGFB-dependent SRF activation is mediated via MRTF (myocardin-related transcription factor) cofactors. We further show that MRTF-SRF signaling promotes pathological pericyte activation during ischemic retinopathy. RNA-sequencing, immunohistology, in vivo live imaging, and in vitro experiments demonstrated that SRF regulates expression of contractile SMC proteins essential to maintain the vascular tone. CONCLUSIONS: SRF is crucial for distinct functions in pericytes and vascular smooth muscle cells. SRF directs pericyte migration downstream of PDGFRB signaling and mediates pathological pericyte activation during ischemic retinopathy. In vascular smooth muscle cells, SRF is essential for expression of the contractile machinery, and its deletion triggers formation of arteriovenous shunts. These essential roles in physiological and pathological contexts provide a rationale for novel therapeutic approaches through targeting SRF activity in MCs.


Subject(s)
Pericytes , Retinal Diseases , Animals , Mice , Pericytes/metabolism , Proto-Oncogene Proteins c-sis/metabolism , RNA/metabolism , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Retinal Diseases/metabolism , Serum Response Factor/genetics , Serum Response Factor/metabolism
13.
Nat Cardiovasc Res ; 1(1): 28-44, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35747128

ABSTRACT

Abnormal hematopoiesis advances cardiovascular disease by generating excess inflammatory leukocytes that attack the arteries and the heart. The bone marrow niche regulates hematopoietic stem cell proliferation and hence the systemic leukocyte pool, but whether cardiovascular disease affects the hematopoietic organ's microvasculature is unknown. Here we show that hypertension, atherosclerosis and myocardial infarction (MI) instigate endothelial dysfunction, leakage, vascular fibrosis and angiogenesis in the bone marrow, altogether leading to overproduction of inflammatory myeloid cells and systemic leukocytosis. Limiting angiogenesis with endothelial deletion of Vegfr2 (encoding vascular endothelial growth factor (VEGF) receptor 2) curbed emergency hematopoiesis after MI. We noted that bone marrow endothelial cells assumed inflammatory transcriptional phenotypes in all examined stages of cardiovascular disease. Endothelial deletion of Il6 or Vcan (encoding versican), genes shown to be highly expressed in mice with atherosclerosis or MI, reduced hematopoiesis and systemic myeloid cell numbers in these conditions. Our findings establish that cardiovascular disease remodels the vascular bone marrow niche, stimulating hematopoiesis and production of inflammatory leukocytes.

14.
Nat Commun ; 13(1): 2022, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440634

ABSTRACT

Tertiary lymphoid structures (TLS) are lymph node-like immune cell clusters that emerge during chronic inflammation in non-lymphoid organs like the kidney, but their origin remains not well understood. Here we show, using conditional deletion strategies of the canonical Notch signaling mediator Rbpj, that loss of endothelial Notch signaling in adult mice induces the spontaneous formation of bona fide TLS in the kidney, liver and lung, based on molecular, cellular and structural criteria. These TLS form in a stereotypical manner around parenchymal arteries, while secondary lymphoid structures remained largely unchanged. This effect is mediated by endothelium of blood vessels, but not lymphatics, since a lymphatic endothelial-specific targeting strategy did not result in TLS formation, and involves loss of arterial specification and concomitant acquisition of a high endothelial cell phenotype, as shown by transcriptional analysis of kidney endothelial cells. This indicates a so far unrecognized role for vascular endothelial cells and Notch signaling in TLS initiation.


Subject(s)
Tertiary Lymphoid Structures , Animals , Endothelial Cells , Endothelium, Vascular , Inflammation , Mice , Receptors, Notch/genetics , Signal Transduction
15.
Nat Commun ; 13(1): 1327, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35288551

ABSTRACT

In adult mammalian bone marrow (BM), vascular endothelial cells and perivascular reticular cells control the function of haematopoietic stem and progenitor cells (HSPCs). During fetal development, the mechanisms regulating the de novo haematopoietic cell colonization of BM remain largely unknown. Here, we show that fetal and adult BM exhibit fundamental differences in cellular composition and molecular interactions by single cell RNA sequencing. While fetal femur is largely devoid of leptin receptor-expressing cells, arterial endothelial cells (AECs) provide Wnt ligand to control the initial HSPC expansion. Haematopoietic stem cells and c-Kit+ HSPCs are reduced when Wnt secretion by AECs is genetically blocked. We identify Wnt2 as AEC-derived signal that activates ß-catenin-dependent proliferation of fetal HSPCs. Treatment of HSPCs with Wnt2 promotes their proliferation and improves engraftment after transplantation. Our work reveals a fundamental switch in the cellular organization and molecular regulation of BM niches in the embryonic and adult organism.


Subject(s)
Bone Marrow , Endothelial Cells , Animals , Bone Marrow Cells , Fetus , Hematopoiesis , Hematopoietic Stem Cells , Mammals
16.
Elife ; 112022 02 04.
Article in English | MEDLINE | ID: mdl-35119364

ABSTRACT

Declining bone mass is associated with aging and osteoporosis, a disease characterized by progressive weakening of the skeleton and increased fracture incidence. Growth and lifelong homeostasis of bone rely on interactions between different cell types including vascular cells and mesenchymal stromal cells (MSCs). As these interactions involve Notch signaling, we have explored whether treatment with secreted Notch ligand proteins can enhance osteogenesis in adult mice. We show that a bone-targeting, high affinity version of the ligand Delta-like 4, termed Dll4(E12), induces bone formation in male mice without causing adverse effects in other organs, which are known to rely on intact Notch signaling. Due to lower bone surface and thereby reduced retention of Dll4(E12), the same approach failed to promote osteogenesis in female and ovariectomized mice but strongly enhanced trabecular bone formation in combination with parathyroid hormone. Single cell analysis of stromal cells indicates that Dll4(E12) primarily acts on MSCs and has comparably minor effects on osteoblasts, endothelial cells, or chondrocytes. We propose that activation of Notch signaling by bone-targeted fusion proteins might be therapeutically useful and can avoid detrimental effects in Notch-dependent processes in other organs.


Subject(s)
Osteogenesis , Osteoporosis/metabolism , Receptors, Notch/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Bone and Bones/metabolism , Calcium-Binding Proteins/metabolism , Chondrocytes/metabolism , Endothelial Cells/metabolism , Female , Human Umbilical Vein Endothelial Cells , Humans , Male , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Osteoblasts/metabolism , Signal Transduction
17.
JCI Insight ; 7(3)2022 02 08.
Article in English | MEDLINE | ID: mdl-35132957

ABSTRACT

Takotsubo syndrome (TTS) is an acute, stress-induced cardiomyopathy that occurs predominantly in women after extreme physical and/or emotional stress. To date, our understanding of the molecular basis for TTS remains unknown and, consequently, specific therapies are lacking. Myocardial infiltration of monocytes and macrophages in TTS has been documented in clinical studies. However, the functional importance of these findings remains poorly understood. Here, we show that a single high dose of isoproterenol (ISO) in mice induced a TTS-like cardiomyopathy phenotype characterized by female predominance, severe cardiac dysfunction, and robust myocardial infiltration of macrophages. Single-cell RNA-Seq studies of myocardial immune cells revealed that TTS-like cardiomyopathy is associated with complex activation of innate and adaptive immune cells in the heart, and macrophages were identified as the dominant immune cells. Global macrophage depletion (via clodronate liposome administration) or blockade of macrophage infiltration (via a CCR2 antagonist or in CCR2-KO mice) resulted in recovery of cardiac dysfunction in ISO-challenged mice. In addition, damping myeloid cell activation by HIF1α deficiency or exposure to the immunomodulatory agent bortezomib ameliorated ISO-induced cardiac dysfunction. Collectively, our findings identify macrophages as a critical regulator of TTS pathogenesis that can be targeted for therapeutic gain.


Subject(s)
Cardiomyopathies/genetics , Gene Expression Regulation , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Macrophages/pathology , Myocytes, Cardiac/pathology , Takotsubo Cardiomyopathy/genetics , Animals , Cardiomyopathies/etiology , Cardiomyopathies/pathology , Disease Models, Animal , Female , Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis , Mice , Mice, Inbred C57BL , Mice, Transgenic , RNA/genetics , RNA/metabolism , Takotsubo Cardiomyopathy/complications , Takotsubo Cardiomyopathy/pathology
18.
Nat Commun ; 13(1): 571, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35091558

ABSTRACT

Developmental osteogenesis, physiological bone remodelling and fracture healing require removal of matrix and cellular debris. Osteoclasts generated by the fusion of circulating monocytes degrade bone, whereas the identity of the cells responsible for cartilage resorption is a long-standing and controversial question. Here we show that matrix degradation and chondrocyte phagocytosis are mediated by fatty acid binding protein 5-expressing cells representing septoclasts, which have a mesenchymal origin and are not derived from haematopoietic cells. The Notch ligand Delta-like 4, provided by endothelial cells, is necessary for septoclast specification and developmental bone growth. Consistent with the termination of growth, septoclasts disappear in adult and ageing bone, but re-emerge in association with growing vessels during fracture healing. We propose that cartilage degradation is mediated by rare, specialized cells distinct from osteoclasts. Our findings have implications for fracture healing, which is frequently impaired in aging humans.


Subject(s)
Cartilage/metabolism , Fracture Healing/physiology , Mesenchymal Stem Cells/metabolism , Osteoclasts/metabolism , Osteogenesis/physiology , Animals , Bone and Bones/cytology , Bone and Bones/metabolism , Bone and Bones/ultrastructure , Cartilage/cytology , Cells, Cultured , Chondrocytes/cytology , Chondrocytes/metabolism , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Female , Fracture Healing/genetics , Humans , Male , Mesenchymal Stem Cells/cytology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Immunoelectron , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Osteoclasts/cytology , Osteogenesis/genetics , RNA-Seq/methods
19.
J Clin Invest ; 132(3)2022 02 01.
Article in English | MEDLINE | ID: mdl-34793333

ABSTRACT

It is widely recognized that inflammation plays a critical role in cardiac hypertrophy and heart failure. However, clinical trials targeting cytokines have shown equivocal effects, indicating the need for a deeper understanding of the precise role of inflammation and inflammatory cells in heart failure. Leukocytes from human subjects and a rodent model of heart failure were characterized by a marked reduction in expression of Klf2 mRNA. Using a mouse model of angiotensin II-induced nonischemic cardiac dysfunction, we showed that neutrophils played an essential role in the pathogenesis and progression of heart failure. Mechanistically, chronic angiotensin II infusion activated a neutrophil KLF2/NETosis pathway that triggered sporadic thrombosis in small myocardial vessels, leading to myocardial hypoxia, cell death, and hypertrophy. Conversely, targeting neutrophils, neutrophil extracellular traps (NETs), or thrombosis ameliorated these pathological changes and preserved cardiac dysfunction. KLF2 regulated neutrophil activation in response to angiotensin II at the molecular level, partly through crosstalk with HIF1 signaling. Taken together, our data implicate neutrophil-mediated immunothrombotic dysregulation as a critical pathogenic mechanism leading to cardiac hypertrophy and heart failure. This neutrophil KLF2-NETosis-thrombosis mechanism underlying chronic heart failure can be exploited for therapeutic gain by therapies targeting neutrophils, NETosis, or thrombosis.


Subject(s)
Cardiomegaly/metabolism , Heart Failure/metabolism , Kruppel-Like Transcription Factors/metabolism , Neutrophil Activation , Neutrophils/metabolism , Thrombosis/metabolism , Animals , Disease Models, Animal , Humans , Mice
20.
Cells ; 10(12)2021 11 24.
Article in English | MEDLINE | ID: mdl-34943801

ABSTRACT

Chronic hypoxia increases the resistance of pulmonary arteries by stimulating their contraction and augmenting their coverage by smooth muscle cells (SMCs). While these responses require adjustment of the vascular SMC transcriptome, regulatory elements are not well defined in this context. Here, we explored the functional role of the transcription factor nuclear factor of activated T-cells 5 (NFAT5/TonEBP) in the hypoxic lung. Regulatory functions of NFAT5 were investigated in cultured artery SMCs and lungs from control (Nfat5fl/fl) and SMC-specific Nfat5-deficient (Nfat5(SMC)-/-) mice. Exposure to hypoxia promoted the expression of genes associated with metabolism and mitochondrial oxidative phosphorylation (OXPHOS) in Nfat5(SMC)-/- versus Nfat5fl/fl lungs. In vitro, hypoxia-exposed Nfat5-deficient pulmonary artery SMCs elevated the level of OXPHOS-related transcripts, mitochondrial respiration, and production of reactive oxygen species (ROS). Right ventricular functions were impaired while pulmonary right ventricular systolic pressure (RVSP) was amplified in hypoxia-exposed Nfat5(SMC)-/- versus Nfat5fl/fl mice. Scavenging of mitochondrial ROS normalized the raise in RVSP. Our findings suggest a critical role for NFAT5 as a suppressor of OXPHOS-associated gene expression, mitochondrial respiration, and ROS production in pulmonary artery SMCs that is vital to limit ROS-dependent arterial resistance in a hypoxic environment.


Subject(s)
Hypoxia/pathology , Lung/pathology , Mitochondria/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery/pathology , Reactive Oxygen Species/metabolism , Transcription Factors/metabolism , Vascular Resistance , Animals , Blood Pressure , Electrocardiography , Gene Expression Regulation , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Metabolome , Mice , Myocytes, Smooth Muscle/pathology , Oxidative Phosphorylation , Oxygen Consumption , Protein Transport , Systole , Transcription Factors/deficiency , Vascular Resistance/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...